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Abstract—Tracking human sleeping postures and vital signs of
breathing and heart rates during sleep is important as it can help
to assess the general physical health of a person and provide use-
ful clues for diagnosing possible diseases. Traditional approaches
(e.g., polysomnography) are limited to clinic usage. Recent radio
frequency-based approaches require specialized devices or dedi-
cated wireless sensors and are only able to track breathing rate.
In this paper, we propose to track the vital signs of both breathing
rate and heart rate during sleep by using off-the-shelf WiFi with-
out any wearable or dedicated devices. Our system reuses existing
WiFi network and exploits the fine-grained channel information
to capture the minute movements caused by breathing and heart
beats. Our system thus has the potential to be widely deployed
and perform continuous long-term monitoring. The developed
algorithm makes use of the channel information in both time
and frequency domain to estimate breathing and heart rates,
and it works well when either individual or two persons are in
bed. Our extensive experiments demonstrate that our system can
accurately capture vital signs during sleep under realistic settings,
and achieve comparable or even better performance comparing
to traditional and existing approaches, which is a strong indica-
tion of providing noninvasive, continuous fine-grained vital signs
monitoring without any additional cost.

Index Terms—Channel state information (CSI), sleep monitor-
ing, vital signs, WiFi.

I. INTRODUCTION

V ITAL signs, such as breathing rate and heart rate, indicate
the state of a person’s essential body functions. They are

the essential components to assess the general physical health
of a person and identify various disease problems. Correlating
the vital signs with our sleep quality can further enable sleep
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apnea diagnosis and treatment [1], treatment for asthma [2],
and sleep stage detection [3]. However, the traditional way
to monitor vital signs during sleep requires a patient to per-
form hospital visits and wear dedicated sensors [4], which
are intrusive and costly. The obtained results may be biased
because of the unfamiliar sleeping environments in the hospi-
tal. Moreover, it is difficult, if not possible, to run long-term
sleep monitoring in clinical settings. Thus, a solution that
can provide noninvasive, low-cost, and long-term vital signs
monitoring without requiring hospital visits is highly desirable.

Recently, radio frequency (RF)-based monitoring solu-
tions [5]–[8] have drawn considerable attention as they
provide noninvasive breathing rate monitoring. For exam-
ple, Adib et al. [7], [8] utilized universal software radio
peripheral (USRP) and frequency modulated continuous wave
(FMCW) radar to monitor a person’s breathing rate by
detecting the chest fluctuations caused by breathing. Doppler
radar [5] and ultraband radar [6] are utilized to catch a
person’s breathing, respectively. These systems involve spe-
cialized devices with high complexity, which prevent them
from large-scale and long-term deployment. Furthermore,
Patwari et al. [9] and Kaltiokallio et al. [10] used coarse-
grained channel information [i.e., received signal strength
(RSS)] extracted from wireless sensor nodes to detect breath-
ing rate. Their approach requires additional wireless network
infrastructure (i.e., dedicated sensor nodes), and the coarse-
grained channel information is not able to capture the vital
signs of heart rate. Another new direction is using wearable
sensors (such as Fitbit [11] and Jawbone [12]) to track people’s
fitness at any time. But they only have the capability of per-
forming coarse-grained sleep monitoring without capturing the
breathing rate, which is critical to many sleep problem diag-
nosis including sleep apnea. Additionally, users are required
to wear these fitness sensors even during their sleep, which
could be a challenge for elder people.

To address these issues, this paper aims to perform con-
tinuous long-term vital signs monitoring with low cost and
without the requirement of wearing any sensor. We show that
it is possible to track breathing rate and heart rate during sleep
by using off-the-shelf WiFi. This will largely increase the
opportunity for wide deployment and in-home use. Indeed,
our system reuses existing WiFi network for tracking vital
signs without dedicated/wearable sensors or additional wire-
less infrastructure. Furthermore, by exploiting fine-grained
channel information, channel state information (CSI), provided
by off-the-shelf WiFi device, our system captures not only the
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breathing rate but also heart rate. Specifically, our system uti-
lizes the readily available channel information to detect the
minute movements caused by breathing and heart beats (i.e.,
inhaling, exhaling, diastole, and systole).

Using CSI has significant implication on how fine-grained
minute movements can be captured for vital signs monitor-
ing. Comparing to the traditional RSS, which only provides
a single measurement of the power over the whole chan-
nel bandwidth, the fine-grained CSI provides both amplitude
and phase information for multiple OFDM subcarriers. For
instance, the mainstream WiFi systems such as 802.11 a/g/n
are based on OFDM where the relatively wideband 20-MHz
channel is partitioned into 52 subcarriers. Due to the frequency
diversity of these narrowband subcarriers, the multipath effect
and shadow fading at different subcarriers may result in sig-
nificant difference in the observed amplitudes. This means
that a small movement in physical environment may lead
to the change of CSI at some subcarriers, whereas such
change maybe smoothed out if we examine the signal strength
over the whole channel bandwidth. Our system thus takes
advantage of the fine-grained CSI provided by off-the-shelf
WiFi device to capture the minute movements for vital signs
monitoring.

Our system uses only a single pair of WiFi device and
wireless AP for detecting the breathing rate, heart rate and
sleeping patterns (e.g., sleeping events and postures) during
sleep. The breathing rate detection algorithm first obtains time
series of CSI from off-the-shelf WiFi device (e.g., desktop, lap-
top, tablet, and smartphone) and then analyzes the information
in time domain and frequency domain. It achieves high accu-
racy for both single and two-person in bed scenarios. To detect
heart rate, our algorithm first applies a bandpass filter to elim-
inate irrelevant frequency components, and then estimates the
heart rate in the frequency domain by locating the frequency
peak in the normal heart rate range. Additionally, we distin-
guish different sleep events (e.g., going to bed and turn overs
during sleep) based on the CSI’s variance energy and further
identify people’s sleep posture using a machine learning-based
approach. Extensive experiments are conducted in laboratory
environment and two apartments with difference sizes. The
results show that our system provides accurate breathing rate
and heart rate estimation not only under typical settings but
also covering challenging scenarios including long distance
between the WiFi device and AP, none-line-of-sight (NLOS)
situation and different sleep postures. This demonstrates that
our approach can provide device-free, continuous fine-grained
vital signs monitoring without any additional cost. It has the
capability to support large-scale deployment and long-term
vital signs monitoring in nonclinical settings.

The main contributions of this paper are summarized as
follows.

1) We show that the existing WiFi network can be reused
to capture vital signs of breathing rate and heart rate
through using only one AP and a single WiFi device.
Such an approach can also be extended to nonsleep
scenarios when the user is stationary.

2) Our proposed system extracts fine-grained CSI from off-
the-shelf WiFi device to detect the minute movements

and provide accurate breathing and heart rates estimation
concurrently.

3) We develop algorithms that have the capability to track
breathing rates of a single person as well as two-person
in bed cases, which cover typical in-home scenarios.

4) The proposed system also have the capability to dis-
tinguish different sleep events and track people’s sleep
postures, which can help people understand their sleep
status/quality.

5) Extensive experiments in both laboratory and two apart-
ments over a three-month period show that our system
can achieve comparable or even better performance as
compared to existing dedicated sensor-based approaches.

The rest of this paper is organized as follows. In Section II,
we put this paper in the context of the related studies. The
design challenge and our system overview are described in
Section III. The breathing rate estimation schemes using CSI
is presented in Section IV. In Section V, we detail the pro-
posed method of heart rate estimation. Regular sleep event
and sleep posture identification is described in Section VI. We
discuss the experimental setup and methodology, and present
the performance evaluation results in Section VII. Finally, we
conclude this paper in Section VIII.

II. RELATED WORK

Breathing rate, heart rate, and statistics of sleep events are
important indicators for evaluating one’s sleep quality, stress
level, and various health conditions. In general, the methods
used to track such information during sleep can be categorized
into four groups: 1) dedicated sensor-based; 2) smartphone and
wearable sensor-based; 3) touch-free sensor-based; and 4) RF
signal-based.

Traditional approaches use dedicated sensors to measure
vital signs during sleep. For example, polysomnography
(PSG) [4] measures body functions including breathing rate,
eye movements (EOG), heart rhythm (ECG), and muscle activ-
ity by attaching multiple sensors to a patient. Such systems
incur high cost and are usually limited to clinical usage. Recent
advances of smartphones and wearable sensors have enabled
in-home sleep monitoring by utilizing the built-in accelerome-
ter and microphone [11]–[14]. These methods mainly provide
coarse-grained monitoring including the detection of body
movements, snoring, or regular sleep events, and are not
able to monitor breathing rate, which is a critical indication
of sleep irregularity such as sleep apnea. They also require
users to place smartphones close-by and wear sensors dur-
ing sleep. Recent smartphone-based approaches [15], [16] can
track breathing using either earphone or acoustic FMCW on
smartphones. Moreover, a more direct solution Zephyr [17]
uses accelerometer and gyroscope measurements from a stan-
dard smartphone held on a person’s chest for respiratory
rate estimation. However, these solutions cannot provide the
information of heart rate and they are also require users to
place smartphones close-by even on the users’ chest while
asleep. Touch-free sensor-based solutions either use the sen-
sors attached to the mattress [18] or install a camera to
capture the chest movement for breathing rate estimation [19].
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These systems, however, require professional installations and
cannot estimate heart rate.

Most related to this paper is the RF signal-based monitoring
mechanisms, such as the use of Doppler radar [5], ultraw-
ideband [6], FMCW radar [7], [8], or RSS [9], [10], [20]
for monitoring the vital signs of breathing rate. In particu-
lar, these mechanisms [5]–[8] rely on specialized hardware
including USRP, FMCW radar and Doppler radar. These
systems incur high cost and high complexity, making them
impractical for large-scale deployment. Patwari et al. [9] and
Kaltiokallio et al. [10] used RSS measurements (e.g., using
16 frequency channels in IEEE 802.15.4) extracted from
wireless sensor nodes to detect the breathing rate. Their
approaches require additional wireless network infrastructure
and high-density placement of sensor nodes. UbiBreath [20]
can track a user’s breathing rate and detect apnea using
RSS measurements from WiFi-enabled devices. However, the
coarse-grained channel information of RSS is not able to cap-
ture the heart rate. Additionally, Nguyen et al. [22] used a
specialized radar (i.e., iMotion radar [21]) to capture the subtle
phase changes of the continuous 2.4-GHz wave signal, which
are associated with a user’s body movements caused by breath-
ing, to estimate the user’s breathing volume. BodyScan [23]
can recognize a diverse set of human activities while also esti-
mating the user’s breathing rate, by analyzing the CSI of the
radio signals transmitted/received by two designed wearable
devices worn on the user’s hip and wrist.

Different from the previous work, our system reuses exist-
ing WiFi network for tracking vital signs of breathing and
heart rates concurrently without dedicated/wearable sensors or
additional wireless infrastructure. By exploiting fine-grained
CSI provided by off-the-shelf WiFi devices, our system cap-
tures both breathing rate as well as heart rate. Our system
thus performs device-free, continuous fine-grained vital signs
monitoring without any additional cost. It has the potential
to be widely deployed in home and many other nonclinical
environments.

III. SYSTEM DESIGN

In this section, we discuss the preliminaries, design chal-
lenges, and overview of our system design.

A. Preliminaries

While proliferating WiFi networks are usually used for
wireless Internet access and connecting local area networks,
such as an in-home WiFi network involving both mobile and
stationary devices (e.g., laptop, smartphone, tablet, desktop,
and smartTV), they have great potential to sense the envi-
ronment changes and capture the minute movements caused
by human body [24]. Indeed, WiFi signals are affected by
human body movements at various scales during sleep, such
as large-scale movements involving going to bed and turn over,
minute movements including inhaling/exhaling for breathing,
and diastole/systole for heart beats. By extracting and ana-
lyzing the unique characteristics of WiFi signals, we could
capture and derive the semantic meanings of such movements
including both breathing rate and heart beats during sleep. We

Fig. 1. CSI amplitude of four subcarriers over time when a person is asleep.

are thus motivated to reuse existing WiFi network to monitor
the fine-grained vital signs during sleep as it does not require
any dedicated/wearable sensors or additional infrastructure
setup.

To monitor the minute movements of breathing and heart
beats, we exploit the CSI provided by off-the-shelf WiFi
devices as opposed to the commonly used RSS. While the
coarse-grained channel information of RSS provides the aver-
aged power in a received radio signal over the whole channel
bandwidth, the fine-grained CSI of WiFi signal (based on
OFDM) describes at each subcarrier how a signal propagates
from the transmitter to the receiver and represents the com-
bined effect of, for example, scattering, fading, and power
decay with distance. For example, in 802.11 a/g/n, a relatively
wideband 20-MHz OFDM channel (or carrier) is partitioned
into 52 subcarriers. And we could examine the amplitude and
phase at each subcarrier, which could be thought of as a nar-
rowband channel, for extracting the minute movements. Due
to the relative narrowband channel, the scattering and reflect-
ing effects caused by minute movements could result in totally
different amplitudes and phases at each subcarrier. Such dif-
ference, however, is usually smoothed out if we look at the
averaged power over the whole channel bandwidth (i.e., RSS).
Analyzing the CSI at each subcarrier thus provides great
opportunity to capture the minute movements from not only
breathing but also heart beats.

Fig. 1 shows the CSI amplitude of four subcarriers (i.e.,
subcarriers 1, 7, 19, and 28) extracted from a laptop in a
802.11n network over time when a person is asleep. His bed
is in between an AP and the laptop with 3 m apart. The person
does not carry any sensor in his body. We observe that the CSI
amplitude of these four subcarriers exhibits an obvious peri-
odic up-and-down trend. Such a pattern could be caused by the
person’s breathing during sleep. This observation strongly sug-
gest that we may achieve device-free fine-grained vital signs
monitoring by leveraging the CSI from off-the-shelf WiFi
devices.

B. Challenges

Our goal is to track human vital signs of breathing and heart
rates simultaneously using CSI measurements from a single
pair of WiFi devices. To build such system under realistic
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Fig. 2. Overview of system flow.

settings as a typical in-home scenario, a number of challenges
need to be addressed.

1) Robustness to Real Environments: The placement of
WiFi devices in real environments could change over time,
and different persons present different sleeping postures. Our
system should be able to provide accurate vital sign monitoring
under such challenging conditions including various distances
between the AP and WiFi devices, presence of walls between
WiFi devices (creating NLOS scenarios), and different sleep-
ing postures. In addition, our system should be able to identify
regular sleep related events (such as turnover or getting out of
bed) to facilitate vital signs monitoring.

2) Tracking Breathing and Heartbeat Simultaneously: Both
breathing and heart beat only involve small body move-
ments, presenting significant challenges when tracking such
vital signs simultaneously under realistic settings. Even if the
repeatable CSI changing pattern caused by breathing could be
detected as shown in Fig. 1, it is difficult to capture heartbeat
movements using WiFi links at the same time. Because the
noisy environments will also affect CSI measurements, mak-
ing it much harder to distinguish the minute movements caused
by breathing (i.e., inhaling and exhaling) and heart beats (i.e.,
diastole and systole).

3) Sensing With Single Pair of AP and WiFi Device: Our
approach should work with existing WiFi infrastructure, which
may have only a single wireless link (between the AP and
the device) across the human body. This presents additional
challenges when two people are in-bed together. Our sys-
tem should be able to distinguish and measure breathing rates
coming from two people. Furthermore, the system should use
WiFi traffic as little as possible, such as only utilizing existing
beaconing traffic.

C. System Overview

The basic idea of our system is to track vital signs during
sleep through capturing the unique patterns embedded in WiFi
signals. As illustrated in Fig. 2, the system takes as input time-
series CSI amplitude measurements, which can be collected at
an off-the-shelf WiFi device by utilizing existing WiFi traffic
or system-generated periodic traffic (if network traffic is insuf-
ficient) during people’s sleep. The data is then processed to
filter out the CSI measurements that contain sleep events (e.g,
going to bed and turn over) or large environmental changes

such as people walking by via coarse sleep event detection
and filtering. The measurements belonging to the regular sleep
events can be further classified to detailed events such as going
to bed, getting off bed, and turnovers. Additionally, sleep pos-
ture plays an important role for people’s sleep status/quality.
For instance, some bad sleep postures (e.g., sleeping on the
stomach) may be the cause of people’s back and neck pain,
stomach troubles [25]. The system thus would identify peo-
ple’s sleep posture using a machine learning-based approach
via sleep posture identification. Moreover, this paper is based
on the fact that breathing and heart rates of resting people
have different frequency ranges (e.g., breathing rate ranges
from 10 to 37 b/min [26], [27], and heart rate ranges from 60
to 80 b/min [28]). This useful information leads us to work
on different frequency bands of the CSI measurements for
accurate vital signs estimation.

The core components of our system are breathing rate esti-
mation and heart rate estimation. After coarse sleep event
detection and data filtering, based on the different frequency
information embedded inside the CSI measurements, the input
is fed into breathing rate estimation and heart rate estimation,
respectively. In particular, the lower-frequency information of
the CSI measurements is processed by the breathing rate esti-
mation component. Our system first performs data calibration
and subcarrier selection to preprocess the data and select only
the subcarriers sensitive to minute human body movements
(i.e., subcarriers with large variances). We then develop two
methods, breathing cycle and PSD-based K-means clustering,
to estimate the breathing rate for single and two-person in-bed
scenarios, respectively. PSD denotes power spectral density
(PSD). Following the similar principle, PSD-based K-means
clustering can be easily extended to handle the case of estimat-
ing breathing rates for multiple people simultaneously given
the number of people under study is known. The higher-
frequency information of the CSI measurements is fed into
the heart rate estimation component. The heart rate is then
derived in the frequency domain by examining the peaks in
PSD of CSI measurements. we leave the detailed presenta-
tion of breathing rate estimation and heart rate estimation to
Sections IV and V, respectively.

IV. BREATHING RATE ESTIMATION

We first describe data calibration and subcarrier selection,
and then present breathing cycle identification for estimating
an individual’s breathing rate. We finally show how to estimate
breathing rates for two persons in-bed case.

A. Data Calibration

Data calibration is used to improve the reliability of the
CSI by mitigating the noise presented in the collected CSI
samples in real environments. The noise sources could come
from environment-related changes, radio signal interference,
etc. Our data calibration first utilizes the Hampel filter [29]
to filter out the outliers which have significant different val-
ues from other neighboring CSI measurements. Specifically,
we apply the Hampel filter with a sliding window at each
subcarrier to remove such outliers.
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Fig. 3. Illustration of data calibration of a single subcarrier.

For CSI amplitude sequence (x1, x2, . . . , xN) at each subcar-
rier, the Hampel identifier defines outliers as those data points
xi whose absolute difference from the median value is greater
than a predetermined threshold, as defined by{ |xi − x∗| > t · M outlier

|xi − x∗| ≤ t · M normal measurement
(1)

where i is from 1 to N, and x∗ represents the median value
of the rank-ordered samples of a data sequence of length N. t
is a scalar threshold and M is the median absolute difference
scale estimate, as defined by the following equation:

M = 1.4286 · median
{∣∣xi − x∗∣∣} (2)

where the constant value 1.4286 ensures that the expected
value of M equals the standard deviation of normally dis-
tributed data [30].

After that, we further apply a moving average filter, which
further removes high-frequency noise that is unlikely to be
caused by breathing or heart beats as the corresponding minute
movements usually present in a fixed frequency range. Fig. 3
illustrates the effectiveness of our data calibration by compar-
ing the CSI amplitude before and after data calibration under
an NLOS case with severe signal outliers: the CSI amplitude
shown in the figure is from a single subcarrier collected from
a WiFi device, which trasmits/receives packets from an AP
with a wall between them. As we can see from the figure,
after data calibration, the sinusoidal waves in CSI amplitude
can clearly reflect the periodic up-and-down chest and belly
movements caused by breathing.

B. Subcarrier Selection Strategy

We observe that the amplitudes of different subcarriers have
different sensitivity to inhaling and exhaling caused by breath-
ing due to frequency diversity. Fig. 4(a) presents an example
of CSI amplitude over time on 30 subcarriers extracted from
a laptop in WiFi network when a person is asleep. We find
that the CSI from the smaller subcarrier indices is significantly
affected by the minute movements caused by breathing, while
CSI from the higher subcarrier indices (i.e., from 15 to 30) is
less sensitive. This is because different subcarriers have dif-
ferent central frequencies, which have different wavelengthes.
Combining the effect of multipath/shadowing with different
frequencies, CSI measurements at different subcarriers thus
have different amplitudes. Those subcarriers not sensitive to
the breathing activity should be filtered out. We utilize the

(a)

(b)

Fig. 4. Example of CSI amplitude pattern at 30 subcarriers and the
corresponding variance. (a) CSI time series patterns after data calibration.
(b) Variance of each subcarrier.

variance of CSI amplitude in a moving time window to quan-
tify the subcarrier’s sensitivity to minute movements. Fig. 4(b)
shows the variance of 30 subcarriers. We can see that sub-
carriers with higher variance are more sensitive to minute
movements. We thus use a threshold-based method to select
subcarriers having large variance of CSI amplitude in a time
window for breathing rate estimation.

C. Breathing Cycle Identification

As breathing involves periodic minute movements of inhal-
ing and exhaling, our breathing cycle identification aims to
capture the periodic changes in CSI measurements caused by
breathing. From Fig. 1, we observe the CSI amplitude on
the selected subcarrier indeed presents a sinusoidal-like peri-
odic changing pattern over the time due to breathing. This
observation suggests that we can identify breathing cycles by
measuring the peak-to-peak time interval of sinusoidal CSI
amplitudes. We thus first identify peaks of sinusoidal CSI
amplitude patterns to calculate peak-to-peak intervals. We then
combine the peak-to-peak intervals from multiple subcarriers
to improve the robustness and the accuracy of breathing cycle
identification.

1) Local Peak Identification: A typical peak finding algo-
rithm determines a data sample as a peak if its value is
larger than its two neighboring samples. However, such simple
method produces many fake peaks (i.e., the identified peaks
that are not at the location of real peaks of the sinusoidal CSI
amplitude pattern) as illustrated in Fig. 5. The peak τ5 has
larger value than its two neighboring samples, yet, it is a fake
peak among these nine identified peaks. In order to filter out
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Fig. 5. Illustration of fake peak removal.

Algorithm 1 Fake Peak Removal
Require:

CSI time series on subcarrier i: ci = {ci(1), ..., ci(M)};
Local peak set: MaxSet = {τk, 1 � k � K};
Length of the verifying window: N;

Ensure:
MaxSet after removing fake maximums;

1: for k=1: K do
2: locs := location(τk);
3: amp := amplitude(τk);
4: for m := locs-

⌊
N−1

2

⌋
: locs+

⌊
N−1

2

⌋
do

5: if m < 0 ‖ m > M then
6: continue;
7: end if
8: if amp < ci(m) then
9: delete τk from MaxSet;

10: break;
11: end if
12: end for
13: end for
14: return MaxSet;

the fake peaks, we apply a threshold to the minimum distance
between two neighboring peaks based on human’s maximum
possible breathing rate. In addition, we develop a Fake Peak
Removal algorithm to further reduce the number of fake peaks.

Specifically, adults usually breathe at 10–14 breathes per
minute (b/min) [27], while new born babies breathe at around
37 b/min [26]. We therefore set the range of breathing rates
being considered in this paper to 10–37 b/min, which cov-
ers a broad range including fast and slow breathing rates. We
further adopt a minimum acceptable interval σmpd that corre-
sponds to the maximum possible breathing rate as a threshold
to remove the peaks that are too close to each other. If a peak
has its backward interval (i.e., the interval between previous
peak and current peak) less than the minimum acceptable inter-
val length, it will be identified as a fake peak. In particular, we
set the minimum acceptable interval σmpd = 60·f /37 samples,
which corresponds to the maximum possible breathing rate for
infants. The parameter f is the sampling rate of CSI measure-
ments that corresponds to WiFi packet transmission rate.

In addition, we confirm the identified peaks by comparing
its value to multiple data samples within a verification window
centered at the peak. The system only keeps the identified
peak when its value is greater than all the data samples in the
verification window. The algorithm of fake peak removal is

Fig. 6. Local peaks of all selected subcarriers.

provided in Algorithm 1. In our experiments, we observe that
a short verification window of 1 s is good enough to remove
fake peaks.

2) Breathing Cycles Combination: Once we capture all the
local peaks from the selected subcarriers, a more clear pattern
can be obtained as shown in Fig. 6. The referenced signal
is derived from the NEULOG Respiration Monitor Logger
Sensor [31], which is connected to a monitor belt attached
to the user’s ribcage while asleep. Next, our system esti-
mates the breathing rate by combining peak-to-peak intervals
obtained crossing all selected subcarriers. We denote a set of
peak-to-peak intervals obtained from P selected subcarriers as
L = [l1, . . . , li, . . . , lP]′, where li = {li(1), . . . , li(Ni − 1)} is
a vector of Ni peak-to-peak intervals obtained from the ith
subcarrier. Then the estimated breathing cycle Ei from the ith
subcarrier can be obtained by using the following equation:

arg min
Ei

Ni−1∑
n=1

|Ei − li(n)|2. (3)

Considering the subcarriers with larger variance are more sen-
sitive to the minute movements, we utilize a weighted mean of
estimated breathing cycles crossing all selected subcarriers to
obtain a more accurate estimation of breathing cycle E, which
is defined as follows:

E =
P∑

i=1

var(ci) · Ei∑P
i=1 var(ci)

(4)

where P is the number of validated subcarriers and ci is
the CSI amplitude measurements on the ith subcarrier. The
breathing rate finally can be identified as 60/E b/min.

D. Breathing Rate Estimation of Two Persons Scenario

Estimating breathing rate becomes challenging when there
are two persons in bed as the CSI measurements would be
affected by two independent movements simultaneously due
to breathing. It is hard to observe a clear sinusoidal pattern in
the time series of CSI amplitude. Nevertheless, the frequency
of the breathing coming from two persons is still preserved if
we transfer the time series of CSI to the frequency domain.
We therefore develop a mechanism to determine two people’s
breathing rates simultaneously by examining the frequency
components in CSI measurements.
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(a) (b)

Fig. 7. Illustration of two people breathing at different frequencies (12 b/min
and 20 b/min). (a) PSD of CSI measurements. (b) K-means clustering of
subcarriers’ peaks.

In particular, our system analyzes the time series of CSI
amplitude in frequency domain by using the PSD. The PSD
transforms the time series of CSI measurements on each sub-
carrier to its power distribution in the frequency domain. It is
used to identify the frequencies having strong signal power.
A strong sinusoidal signal generates a peak at the frequency
corresponding to the period of the sinusoidal signal in PSD.
Therefore, the CSI amplitude measurements collected when
two persons in bed should present two strong peaks at the
frequency corresponding to the breathing rate of two per-
sons, respectively. The PSD on the ith subcarrier with N CSI
amplitude measurements can be calculated with the following
equation:

PSDi = 10 log10
(abs(FFT(ci)))

2

N
(5)

where ci is the vector of CSI measurements on subcarrier i.
For each selected subcarrier, we utilize a threshold-based

approach to identifying the candidate peaks within its PSD.
We then use a K-means clustering method to classify the can-
didate peaks into two clusters based on 2-D feature including
PSD amplitude and corresponding frequency. The number of
targeted people (i.e., K in K-means) can be either estimated
using existing work (e.g., [32]) or entered manually from the
users. The average values of the frequencies in two clus-
ters are identified as the breathing rates of these two people.
Fig. 7 shows an example of estimating two persons’ breath-
ing rate using PSD-based method. The ground truths of two
persons’ breathing rates are 12 and 20 b/min (i.e., 0.2 and
0.33 Hz, respectively). Fig. 7(a) depicts that there are two
strong peaks in the PSD of selected subcarriers near these two
frequencies, respectively. Fig. 7(b) shows that our PSD-based
K-means clustering method can effectively estimate the breath-
ing rates of two persons in bed simultaneously. We note that
the proposed approach still works even when two people have
the same breathing rates. Under such scenario, our approach
returns two close-by PSD peaks on each selected subcarrier
in the frequency domain after K-means clustering. In addition,
the person’s chest or belly that is closer to the wireless link
has bigger impact on the CSI changes, which creates more
obvious periodic changes of CSI. This leads to the stronger
peak corresponds to that person’s breathing or heart beat rate.
We thus can map the detected breathing or heart rates to each
individual based on the strength of the peak and the proximity
of the individual to the wireless link.

(a) (b)

Fig. 8. Recovered heart beats by applying pass band filtering and PSD of CSI
measurements. (a) CSI time series patterns. (b) PSD of CSI measurements on
all subcarriers.

V. HEART RATE ESTIMATION

Heart rate is a very important indicator of the persons’ sleep
status, quality and overall health condition. While the breath-
ing patterns can be observed in the CSI measurement, the
heart rates do not produce observable periodic CSI change
patterns in the time series CSI measurements. This is because
the vibration of blood vessels caused by heart beat (i.e., dias-
tole and systole) are smaller minute movements than that of
breathing. Thus, the effect of minute movement of heartbeat
is overlapped with and covered by the chest and belly move-
ments of breathing. On the other hand, the heartbeat has much
higher frequency than breathing. We thus can filter out the
interference of breathing in order to facilitate the heart rate
estimation.

In particular, after coarse sleep event detection and filter-
ing, the CSI measurements with the frequency range related
to normal heart rate range of resting people (i.e., 60–80 b/min,
which corresponds to 1–1.33 Hz) will be separated and served
as input to our Heart Rate Estimation. The patterns of CSI
measurements of all subcarriers after such band-pass filtering
are illustrated in Fig. 8(a), from which we can observe the
CSI changing that accompany the heart beats. With the aid of
the band-pass filter, the mean PSD curve for all subcarriers
displays a noticeable peak in the PSD graph at the frequency
of 1.095 Hz, namely 65.7 b/min, in Fig. 8(b). In the same fig-
ure, there is a black dashed line representing the ground truth
of 66 b/min measured by a commercial fingertip pulse sensor
during such time period. We then analyze the CSI amplitude
on each subcarrier in frequency domain and generate the PSD
[refer to (5)] to identify the frequencies having strong signal
power. We can thus determine the heart rate by locating the
maximum power in the average PSD of all subcarriers in the
normal heart rate range. For two person’s heart rates monitor-
ing, we can identify two heart rates simultaneously by using
the similar approach to the breathing rate estimation of two
persons illustrated in Section IV-D.

In addition to heart rates, fine-grained heart movement met-
rics (e.g., the heart rate variability and R-R interval) have
been shown to be good predictors for many possible heart dis-
eases [33]. We find that the normalized CSI can well capture
the detailed heart movement information from WiFi signals.
Particularly, we preprocess the raw CSI readings on each sub-
carrier via the aforementioned band-pass filter, and sum each
subcarrier’s readings together to get the normalized CSI. In the
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Fig. 9. Comparison of normalized CSI patterns and PPG sensor readings.

experiment, we placed the WiFi device and AP at two sides of
the bed with the distance of 5 ft, and the line-of-sight between
the WiFi device/AP is crossing the person’s chest, so that
our system can well capture the user’s minute body move-
ments associated with the heart beats. Due to the vibrations
of blood vessels caused by the diastole and systole of a heart,
the human body usually has slight movements when the heart
beats. Similar to the body movements caused by breathing,
the even smaller movements associated with heart beats also
result in different amplitudes and phases at each subcarrier
of WiFi signals. After the band-pass filtering with the pass
band limited to the frequency range of human heart rate, the
peaks/valleys in the CSI patterns can be used to measure the
heart contracts and cardiac diastole motions. Fig. 9 compares
the normalized CSI patterns to a wrist-worn photoplethysmo-
gram (PPG) sensor’s readings when the user is asleep. The
PPG sensor is usually used in clinical scenarios for collect-
ing accurate heart rates and detailed heart movement metrics.
From Fig. 9, we can see that the changing pattern of the nor-
malized CSI is highly correlated with the readings from the
PPG sensor, indicating that the normalized CSI obtained from
WiFi signals could be utilized to extract the fine-grained heart
movement metrics such as heart contracts and cardiac diastole
(i.e., peak/valley in the corresponding CSI patterns [34]).

VI. SLEEP EVENT AND SLEEP POSTURE IDENTIFICATION

A. Coarse Sleep Event Detection and Environmental
Change Filtering

Coarse sleep event detection and filtering is used to detect
and filter out the sleep events or environmental changes that
interfere with the minute movements of breathing and heart
beat during sleep. These sleep events, such as turnovers (i.e.,
changing sleeping postures) and getting up, and occasional
changes of environments, such as people walking by, involve
large-scale body movements which significantly affect the CSI
measurements and are irrelevant to vital signs monitoring.
Our system thus performs coarse determination of CSI seg-
ments containing such inference factors and filters them out
to facilitate accurate vital signs monitoring during sleep.

In particular, we employ a threshold-based approach to
determine whether a segment of CSI measurements contains
sleep events/environmental changes or not by examining the
short-time energy of the moving variance of the CSI mea-
surements. The rationale behind this is that the sleep events
or environmental changes involving large body movements
(e.g., going to bed and turn over) result in much larger

Fig. 10. Short time energy of the variance of difference sleep events.

changes of CSI measurement than that of minute movements
of breathing and heart beat. The large movements thus can be
detected once the variance energy of the corresponding CSI
measurements exceeds a particular threshold.

We denote the CSI samples of P subcarriers as C =
[C1, . . . , Cp, . . . , CP]′, where Cp = {cp(1), . . . , cp(T)} rep-
resents T CSI amplitudes on the pth subcarrier. We further
denote the moving variances of the P subcarriers as V =
[V1, . . . , Vp, . . . , VP]′, where Vp = {vp(1), . . . , vp(T)} are the
moving variances derived from Cp. Our system can then cal-
culate the cumulative moving variance energy of CSI samples
accessing P subcarriers as

E = 1

NP

P∑
p=1

N∑
n=1

∣∣vp(n)
∣∣2 (6)

where N denotes the window length of short time energy.
We empirically determine the variance energy to be 0.02

as the threshold in this paper. Fig. 10 illustrates the normal-
ized moving variance energy of CSI measurements that are
collected when the participant involves different sleep events
during sleep. We observe that all sleep events generate signif-
icantly large variance energy comparing to that of the minute
movements of only breathing and heart beats.

B. Regular Sleep Event Identification

Given the detected sleep events, we further classify them
into detailed events such as going to bed, getting off bed, and
turnovers. Generating statistic of such detailed events can help
quantify the sleep quality. For example, frequent getting up or
turning overs may suggest that the person has difficulty falling
asleep. This information contributes to many healthcare appli-
cations such as elderly care and medical diagnosis. As shown
in Fig. 10, sleep events involving relative larger-scale move-
ments (i.e., going to bed and getting out of bed) result in much
larger variance energy than those involving relative smaller-
scale movements (i.e., turn overs). We thus can distinguish
sleep events with larger-scale movements from those with
smaller-scale movements by comparing the variance energy
from (6). To further distinguish larger-scale movements, we
can exploit the changes of the number of persons in bed to
infer these two events. The number of persons in bed can
be obtained by using a profile-based approach as studied in
existing work (e.g., [32]).

C. Sleep Posture Identification

Sleep posture/position also plays an important role on a
good night’s sleep. A comfortable sleep posture could make a
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Fig. 11. Derived Fisher score of the extracted 270 features on 30 subcarrier
groups (features 1–30 are the first feature mean on 30 subcarrier groups, and
so on so forth).

person easier to align his head, neck, spine, and keep them in a
neutral position, whereas some bad sleep postures (e.g., sleep-
ing on the stomach) may be the cause of people’s back
and neck pain, stomach troubles, etc. [25]. Moreover, some
researchers also found that different sleep postures incur dif-
ferent health effects. For example, the freefall posture is good
for digestion, while the starfish and soldier positions are more
likely to lead to snoring and a bad night’s sleep [35]. This
encourages us to identify and track people’s sleep postures
using WiFi signals, which could provide additional sleep infor-
mation to assist identifying potential reasons of sleep difficulty
or health problems. Intuitively, different sleep postures have
inevitable influence to WiFi signals, therefore we propose to
match the features extracted from CSI with the trained profiles
to differentiate sleep postures.

1) Feature Extraction and Selection: In particular, we use
a sliding window whose length is 5 s on the calibrated
CSI time series (after the data calibration that is discussed
in Section IV-A) and extract nine basic features including
mean, maximum, minimum, variance, skewness, range, mode,
median, and kurtosis on each subcarrier group. Therefore, for
the 30 subcarrier groups, we could have 270 features in total
for each time window. In addition, since not all wireless signal
transmission paths would be influenced by people’s different
postures, we find that only a few subcarriers or features are dis-
tinguishable enough to differentiate these sleep postures. We
thus select a subset of features that are more unique between
different sleep postures from the 270 extracted features on 30
subcarrier groups based on Fisher score [36]. The Fisher score
of the ith feature is defined as follows:

Fi =
∑c

j=1 nj
(
μj − μ

)2

∑c
j=1 njδ

2
j

(7)

where nj is the number of instances in sleep posture class j,
j = 1, . . . , c, μj and δ2

j denote the mean and variance of class
j corresponding to the ith feature, and μ denotes the mean of
ith feature candidates in the whole training data sets. Fig. 11
shows the normalized Fisher scores of those 270 features span-
ning on 30 subcarrier groups that we extract to discriminate
different sleep postures. Fig. 11 shows the normalized Fisher
scores of the nine types of features extracted from 30 subcar-
rier groups, every 30 Fisher scores in this figure correspond
to one type of the features. From the figure, we observe that,
for a particular type of feature, not all the subcarriers have
high Fisher scores (e.g., presenting a V-shape pattern), which

(a) (b)

Fig. 12. Setup of relative position of WiFi device and AP and sleeping
postures. (a) Setup of WiFi device-AP pair with different relative positions.
(b) Different sleep postures in bed [35].

means they are not equally sensitive to human body move-
ments. Note that such sensitivity differences are often caused
by the relative position of the AP and WiFi device to the
human body. In addition, we observe that the features vari-
ance, skewness, range, and kurtosis (i.e., feature IDs 91–180
and 241–270) with low Fisher score are not representative for
each posture. In order to reduce the impact of nonsensitive fea-
tures and subcarrier groups to the sleep posture identification,
we empirically choose a threshold (i.e., τf = 0.1) and only
use the features having Fisher scores larger than the threshold
for the sleep posture identification.

2) PCA Dimension Reduction: In order to further reduce
the computational cost in the later classification process, we
adopt principal component analysis (PCA) [37] which not only
converts original feature vectors into a set of linearly uncor-
related principal components but also removes uncorrelated
noise components in the features. Specifically, we adopt PCA
to convert the selected features in each time window into 20
linearly uncorrelated principal components.

3) Posture Training and Identification: Our system mainly
focus on identifying four typical sleep postures, including curl
up, supine, prone, and recumbent, which are illustrated in
Fig. 12(b). Given a specific WiFi device setup, our system first
constructs the four sleep posture profiles with the extracted
CSI features. Then the four posture profiles are, respectively,
used to train a machine learning-based classifier. Finally, in
the sleep posture identification phase, CSI measurements and
their corresponding features collected while the user is sleep-
ing are fed into the classifier to identify the user’s posture.
We compared the performance of using four different classi-
fiers including discriminant analysis (DA), k-nearest neighbors
(k-NN), support vector machine (SVM), and random forest
(RF), which are described in Section VII.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our system of tracking vital
signs during sleep in both laboratory and two apartments.

A. Device and Network

We conduct experiments in an 802.11n WiFi network with
a single off-the-shelf WiFi device (i.e., Lenovo T500 Laptop)
connected to a commercial wireless access point (AP) (i.e.,
TP-Link TL-WDR4300). The laptop runs Ubuntu 10.04 LTS
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(a) (b)

Fig. 13. Two apartment setup.

with the 2.6.36 kernel and is equipped with an Intel WiFi Link
5300 card for measuring CSI [38]. Unless mentioned other-
wise, the packet transmission rate is set to 20 pkts/s. How
the packet rate affects the performance will be discussed in
Section VII-F4. For each packet, we extract CSI for 30 subcar-
rier groups, which are evenly distributed in the 56 subcarriers
of a 20-MHz channel [38].

B. Experimental Methodology

The experiments are conducted in both laboratory and
two apartments with six participants over a three-month time
period. The laboratory environment is a large room with office
cubic around. It is used to study the impact of various fac-
tors such as obstacles, the various distances between the AP
and the WiFi device, and sleep postures. In breathing rate
estimation experiments, the participants lie on a bed and con-
trol their breathing rate to follow various steady beats from
a metronome, which is set to a rhythm ranging from 12 to
18 b/min.

We also conduct experiments in two apartments with differ-
ent bedroom sizes. Fig. 13 illustrates the environmental setup
in two bedrooms, in which both beds are queen size. The
smaller one (i.e., bedroom 1) has the size of about 12 ft × 9 ft,
whereas the larger one (i.e., bedroom 2) is about 15 ft × 12 ft.
As shown in Fig. 13, we have three setups in both apartments:
setup 1 is the ideal scenario where the AP and WiFi device
are placed at two sides of the bed. This setup is useful for per-
sons who want to optimize the performance of the vital signs
monitoring during sleep. Setup 2 represents a typical scenario
where there is an AP inside the room and a WiFi device, such
as smartphone, laptop, or tablet, is put on the bed table. Setup
2 has larger distance between the AP and the WiFi device than
setup 1. Setup 3 is a challenging scenario where the AP and
the WiFi device are placed in different rooms with a concrete
wall between them. The distance between the AP and the WiFi
device is the largest among three setups. In this setup, we uti-
lize directional antennas (i.e., TL-ANT2406A) to enhance the
reception of WiFi signals. Specifically, the distances between
the AP and the WiFi device in the three setups of the bedroom
1 are 5, 13, and 11 ft, respectively. And the distances in the
three setups of the bedroom 2 are 5, 14, and 12 ft, respectively.
The ground truths of breathing and heart rates are monitored
by the NEULOG Respiration Monitor Logger Sensor [31] and
a fingertip pulse oximeter, respectively.

(a) (b)

Fig. 14. Performance under different distances between WiFi device and AP.
(a) Mean estimation error. (b) CDF of estimation error.

For the sleep posture identification experiments, we collect
the CSI measurements when a participant lies in bed in the
laboratory environment and perform four common sleep pos-
tures, which include prone, supine, curl-up, and recumbent as
shown in Fig. 12(b). The participant stayed in each posture
for about 40 min. The relative position of the AP/WiFi device
to the human body is same as the setup 2 in Fig. 13(a), and
the distance of the AP and WiFi device is around 10 ft.

C. Evaluation of Breathing Rate Estimation

We evaluate the overall performance of breathing rate
estimation under different scenarios including different dis-
tances between the AP and the WiFi, evaluation in two real
apartments and two persons in bed case.

1) Effect of Device Distance: As typical bedroom has lim-
ited space, we choose a large laboratory environment to study
the performance of breathing rate estimation under various
distances. The AP and the WiFi devices are placed at two
sides of the bed [i.e., P0 setup in Fig. 12(a)] with distances
from 2 to 10 m. Fig. 14(a) presents the mean error in terms
of b/min of breathing rate estimation under different distances
when there is a single person in bed. Overall, we observe that
the mean estimation error of our breathing rate estimation is
lower than 0.4 b/min, which demonstrates that our system is
very accurate across different distances including very large
distances such as 5–10 m. In addition, shorter distance between
the AP and the WiFi device results in better performance. For
example, the mean error is within 0.2 b/min when the dis-
tance is under 5 m. This is because the received WiFi signals
are stronger with shorter communication distances, providing
more reliable measurements to capture the minute movements
of breathing. Comparing to the result of existing work using
RSS [10] which only tested with the distance of 2 m, as shown
in yellow bar in Fig. 14(a), our system provides significantly
better performance (i.e., the error is reduced by about 67%).

Fig. 14(b) depicts the cumulative density function (CDF)
of the breathing rate estimation error for three categories
of distances between the AP and WiFi device: 1) best case
(i.e., 2 m); 2) typical case (i.e., 3–7 m covering mid-sized
bedrooms); and 3) challenging case (i.e., 8–10 m covering
huge-sized bedrooms). As we can see that for both best case
and typical case, over 90% estimation errors are less than
0.4 b/min. Even for the challenging case, over 80% of esti-
mation errors are smaller than 0.5 b/min. This suggests that



LIU et al.: MONITORING VITAL SIGNS AND POSTURES DURING SLEEP USING WiFi SIGNALS 2081

(a) (b)

Fig. 15. Performance in two real apartments. (a) Mean estimation error.
(b) CDF of estimation error.

(a) (b)

Fig. 16. Breathing rate estimation of two persons in bed. (a) Mean estimation
error. (b) CDF of estimation error.

our system can achieve highly accurate breathing rate estima-
tion by using a single pair of AP and WiFi device. And it
supports large distance between them.

2) Evaluation in Real Apartments: We next evaluate the
breathing rate estimation in two different-size apartment bed-
rooms with different deployments of the AP and WiFi device,
as shown in Fig. 13. Fig. 15(a) presents the mean estimation
error for each setup in two bedrooms. We find that the setup
1 achieves the lowest estimation error of about 0.15 b/min in
both bedrooms due to the shortest distance between the AP
and WiFi devices. The estimation error of setup 2 increases
as the distance between two devices increases. Still, setup 2
has the estimation error as low as 0.22 and 0.24 b/min in
bedrooms 1 and 2, respectively. In addition, we observe that
although setup 3 involves the obstacle (i.e., a 6-in wall) that
blocks the line-of-sight signal transmission and longer distance
between the AP and WiFi devices, we can still achieve less
than 0.3-b/min mean estimation error with a single pair of AP
and WiFi device. Moreover, Fig. 15(b) shows that more than
80% estimation errors are less than 0.5 b/min for all of those
three setups in two real bedrooms, indicating that our system
is accurate and robust in real apartment environments. The
above results show that our system provides effective breath-
ing rate monitoring under various distances of WiFi device
and AP and is robust across different environments.

3) Two Persons in Bed Case: We further test our system
with two persons in bed using bedroom 1 setup. The AP and
WiFi device are placed at two sides of the bed with the dis-
tance of 3 m. Two participants are breathing with different
rates as: {12, 12 b/min}, {12, 13 b/min}, and {12, 16 b/min}.
Fig. 16 depicts the mean estimation error and the CDF of the
breathing estimation error. We observe that the mean error is
within 0.5 b/min for all combination of different breathing
rates. In addition, we find that over 90% of estimation errors

Fig. 17. Performance of heart rate estimation.

(a) (b)

Fig. 18. Performance of sleep posture identification. (a) Posture classification
accuracy. (b) Precision/recall of posture identification.

are less than 1 b/min, which is comparable to that of commer-
cial physical contact devices (e.g., zephyr [39]). Given that we
only use a single pair of AP and WiFi device, such accuracy
of breathing rate monitoring is very encouraging.

D. Performance of Heart Rate Estimation

Fig. 17 illustrates the CDF of heart rate estimation error
when one person is in bed using setup 1 in bedroom 1 with the
AP equipped with directional antennas. We observe that about
57% of estimation errors are less than 2 b/min and over 90%
of estimation errors are less than 4 b/min. The results are very
encouraging as our system achieves comparable accuracy to
that of commercial sensors, e.g., Zephyr [39] and SleepIQ [18].
Comparing with these commercial products, our system reuses
existing WiFi network without dedicated/wearable sensors or
additional cost. Our system thus is able to support large-scale
deployment and long-term vital signs monitoring in nonclin-
ical settings. To the best of our knowledge, this paper is the
first to achieve device-free heart rate estimation leveraging
off-the-shelf WiFi.

E. Performance of Sleep Posture Identification

We adopt a variety of machine learning classifiers to per-
form sleep posture identification, including DA, SVMs with
linear kernel, k-NNs (K = 5), and RFs. Fig. 18(a) presents
the overall accuracies of sleep posture recognition models
built upon multiple classifiers. We find that all classifiers yield
the accuracies over 80%. Specifically, k-NN (K = 5), SVM,
and RF classifiers result in the sleep posture identification
accuracies over 90%, which also verifies the robustness of
aforementioned feature extraction and selection techniques.
We then look into the precision and recall rates of our sleep
posture recognition model trained by the RF that outper-
forms all other classifiers, which are shown in Fig. 18(b). We
notice that even the lowest precision and recall rates across
all four sleep postures are still higher than 0.95, which again
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Fig. 19. Confusion matrix of sleep posture identification.

(a) (b)

Fig. 20. Impact of sleep postures on the breathing rate estimation. (a) Mean
estimation error. (b) CDF of estimation error.

demonstrates the decent accuracy achieved by our system in
identifying user various sleep postures in bed.

We further examine the confusion matrix that describes the
identification accuracy for each of four sleep postures using
the RF classifier, which is shown as Fig. 19. Each row rep-
resents the actual user sleep posture and each column shows
the posture that is predicted by our system. Each cell in this
confusion matrix contains the percentage of the actual user
sleep posture in the row that is classified as the postures in
the column. We note that our sleep posture classification model
using RFs can estimate each of sleep postures with accuracy
over 98%. The above evaluation results collectively show that
our system is able to estimate user sleep postures with high
accuracy using a single pair of WiFi devices.

F. Impact of Various Factors

In this section, we perform detailed study of breathing rate
estimation under various factors.

1) Sleep Postures: We experiment with different sleep pos-
tures as shown in Fig. 12(b). The AP and laptop are placed
at two sides of the bed with the distance of 3 m. Fig. 20(a)
compares the mean error of breathing rate estimation resulted
from different sleep postures. Overall, our system achieves
less than 0.3-b/min mean error for all sleep postures, which
demonstrates the effectiveness and robustness of our system.
In particular, the mean estimation errors of supine, curl up,
and recumbent positions are about 0.07, 0.1, and 0.158 b/min,
respectively. Fig. 20(b) shows the CDF curves of estimation
error for all postures. We find that our system can obtain less
than 0.2-b/min error for more than 80% of typical sleep pos-
tures. The prone posture has the largest mean estimation error
of about 0.25 b/min for the reason that the body movements,
which are caused by breathing, are mainly in the chest and

(a) (b)

Fig. 21. Impact of the types of obstacles between WiFi device and AP on the
breathing rate estimation. (a) Mean estimation error. (b) CDF of estimation
error.

(a) (b)

Fig. 22. Effect of relative position of WiFi device and AP. (a) Mean
estimation error. (b) CDF of estimation error.

belly and would be absorbed and blocked by the soft mat-
tress. Still, our system achieves 93% of estimation errors less
than 0.5 b/min for prone posture.

2) Obstacles/Walls: We evaluate our system with obstacles
of different materials in between of AP and WiFi device with
P0 deployment in Fig. 12(a). These obstacles are commonly
used materials in home environments including a plastic frame
of 1 in, a solid wood door of 2 in, and a concrete wall of 6 in.
As more and more people use directional antenna to boost the
wireless signal reception in home WiFi network, we use both
directional and omnidirectional antennas in the experiments.
From Fig. 21(a), we observe that the mean error is less than
0.4 b/min for all materials. Obviously, with the concrete wall,
the performance is slightly worse than that of door and plas-
tic frame. In addition, by using the directional antenna, the
mean error decreases about 0.1 b/min, indicating the direc-
tional antenna can enhance the performance of breathing rate
estimation due to stronger received signals. Fig. 21(b) shows
the CDFs of estimation error. We observe that the error is
always within 0.5 and 1 b/min for the plastic frame and wall,
respectively. The results show that our system can work under
different obstacles and the directional antenna could improve
the performance. A more comprehensive study of the system
performance in various environments with more obstacles and
walls will be presented in our future work.

3) Relative Position of WiFi Device and AP: Fig. 22(a)
shows the mean error of breathing rate estimation under dif-
ferent relative positions of Tx–Rx pair (i.e., the AP and WiFi
device), as shown in Fig. 12(a). We find that the deployment
P2 has the largest mean error at about 0.26 b/min among all
deployments (i.e., P0–P4) since the WiFi signals are partially
blocked by the human body (i.e., head and feet). In addi-
tion, Fig. 22(b) depicts the CDFs of breathing rate estimation
errors. We observe that the estimation errors are all within
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Fig. 23. Effect of packet transmission rate.

than 0.5 b/min even for the worst case deployment P2. Above
results show that our system is effective under different relative
positions of WiFi device-AP pair.

4) Packet Transmission Rate: As higher packet transmis-
sion rate results in more CSI measurements for vital signs
monitoring, we are interested in how the packet rate affects
the performance of our system. Furthermore, we study whether
our system can work with existing WiFi beaconing packets.
Fig. 23 presents the mean breathing rate estimation error ver-
sus packet transmission rate when varying the transmission
rate from 5 to 20 pkt/s using the dataset from apartment exper-
iment (i.e., bedroom 1 and setup 1). We observe that high
packet transmission rate slightly improves the performance.
Overall, our system is not very sensitive to packet transmis-
sion rate, given the range from 5 to 20 pkt/s. Specifically,
when the packet transmission rate is as low as 5 or 10 pkts/s,
our system has about 0.24- and 0.2-b/min mean estimation
error, respectively. As the commercial APs have the beacon-
ing of 10 pkts/s to broadcast their SSID, our system is able to
use such beacons for accurate breathing rate estimation. These
results show that our system cannot only work with existing
AP beaconing packets but also provide accurate breathing rate
monitoring with even less packet rate, such as 5 pkts/s.

VIII. CONCLUSION

In this paper, we show that the WiFi network could be
exploited to track vital signs during sleep including breath-
ing and heart rates using only one AP and a single WiFi
device. In particular, our system exploits fine-grained CSI
from off-the-shelf WiFi devices to detect the minute move-
ments associated with breathing and heartbeat activities. Our
algorithms grounded on CSI information in both time and fre-
quency domain have the capability to estimate the breathing
rate of a single person as well as two-person in bed cases.
Additionally, the existing WiFi links can also be used to track
people’s sleeping events (e.g., turnovers and getting up) and
sleeping postures. Extensive experiments in both laboratory
and two apartments confirm that our proposed approach using
the existing WiFi network can achieve comparable or even
better accuracies as compared to existing dedicated sensor-
based approaches. This WiFi-based approach opens up a new
direction in performing device-free and low-cost vital sign
monitoring during sleep in nonclinical settings.
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